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Abstract

The determination of high-risk zones is an important part in finding unexploded
bombs that have been lying under the ground in German properties since the Second
World War. This thesis gives an overview on possible methods to determine high-risk
zones: on the one hand, methods that draw a circle around each bomb crater with a
certain radius, which can be fixed or data-driven, to determine the high-risk zone.
Those methods are together classified as distance-based methods. On the other hand,
there is a method that is based on the intensity of the crater point pattern.
Furthermore, the thesis describes the implementation of the different methods which
is realized in the R package highriskzone. In oder to give an overview on the
package, example usages are demonstrated.
Additionally, simulation studies were conducted in which different point patterns
were simulated: homogeneous Poisson processes and two-dimensional normal mixture
distributions. The study showed that the distance-based method and the intensity-
based method deliver comparably good results.
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1 Motivation

It is now 67 years since the official end of the Second World War and still unexploded
bombs from that time are an issue. For instance, during construction work yet duds
are being found. To provide evacuations during construction works and to ensure
the safety of the workers, it is neccesary to scan high risk areas for bombs before
starting any other works. Since the search for unexploded bombs is expensive, it is
reasonable to consider carefully where to search.
In the course of this thesis, different ways of computing high-risk zones for duds
are being discussed and implemented in an R package, the package is illustrated in
example analysis and a simulation study compares the two most relevant methods
for specific point patterns.
Methods have been developed in order to determine high-risk zones for unexploded
bombs. Nevertheless they are highly useful for other matters than bombs and so is
the R package. In this thesis, the bombs topic will be used to facilitate understanding.

The project of determining high-risk zones for unexploded bombs from the Sec-
ond World War was initiated by the Oberfinanzdirektion Niedersachsen (OFD) in
order to remove duds in federal properties in Germany. This thesis is based on
investigations on this field by Monia Mahling et al. [Mahling et al. 2013].
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2 Methods for computing high-risk zones

The following sections describe three methods to determine a high-risk zone. The first
method, the method of fixed radius, was formerly used at the OFD. The other two
methods are the nowadays competing methods in calculating zones to be searched
for unexploded bombs. The quantile-based method is connatural to the method of
fixed radius, but more advanced. The third method is using the intensity for the
computation. This method was developed in the past years by Monia Mahling and
colleagues in order to achieve an improved approach. The upcoming explanations
are only basics. For further information see Mahling et al. [2013].

2.1 Notation

Let X be the spatial point process, which in the case here is the location of all
bombs and Y is a subset of X describing the observed process, i.e. the bomb crater
of exploded bombs. The process of unexploded bombs (unobserved events) then is
Z = X \ Y , meaning that Z and Y are disjoint and together forming X. Further W
ist the observation window of X. A clear observation window is needed since there is
no information about bombs outside the observed area.

2.2 Distance-based methods

The two following methods use the distance to the next event to determine the
high-risk zone. The first assumes that unexploded bombs lie within a certain radius
around the bomb crater. The second uses a quantile of the nearest-neighbour-distance
to designate the zone.
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2 Methods for computing high-risk zones

2.2.1 Method of fixed radius

The method of fixed radius is a simple approach. Here, high-risk zones are appointed
by drawing a circle around each bomb crater with a fixed radius r—the region within
the circles defines the zone.

Rr = {s ∈W : min
j
||s− yj || ≤ r} (2.1)

where s is a location in the observation window W and yj an event of the observed
process.

2.2.2 Quantile-based method

This technique is a data-based development of the method of fixed radius. For each
exploded bomb yi in the point process Y , the distance to the nearest other exploded
bomb in Y is calculated by the nearest-neighbour-distance

ti = min
j 6=i
‖yi − yj‖. (2.2)

From the empirical distribution function of the nearest-neighbour-distances of the
point pattern

G(r) = 1
nY

∑
i

1{ti ≤ r}, (2.3)

the p-quantile Q(p) can be calculated. The radius of the circles around each observed
event is assesed the p-quantile, so the radius in this method depends on the distances
between the observed events. The value of p is a real number between 0 and 1. Is p
set near 1, there should be few unexploded bombs outside the searched zone, since
the relative numer of unexploded bombs should be around 1− p.
On these grounds the high-risk zone Rr is defined as

Rr = {s ∈W : min
j
||s− yj || ≤ Q(p)} (2.4)

[Mahling et al. 2013].

Comparing the formulas of the high-risk zone of the two distance-based methods
shows that the only difference between them, is the way the radius is specified.
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2.3 Intensity-based method

2.3 Intensity-based method

The intensity-based method is built on spatial point process methods, more precisely
on Poisson point process methodology.

2.3.1 Spatial point processes

Patterns of exploded bombs can be described by spatial point processes. According to
Illian et al. [2008], point processes “are stochastic models of irregluar point patterns”
in which a point pattern is an accumulation of points in a set or area. Usually point
patterns are seen as samples or realisations of point processes [Illian et al. 2008].
In the following NX(A) will designate the number of bombs in a region A ⊆W . The
expected number of bombs in region A, also called intensity measure E(NX(A)) =
ΛX(A), is defined as

ΛX(A) =
∫

A
λX(x)dx (2.5)

with λX(s) as the intensity function in location s ∈W which is proportional to the
point density around the location [Mahling et al. 2013; Illian et al. 2008, p. 28].

Inhomogeneous Poisson process

The spatial point process X, the process of exploded bombs, is assumed to be an
inhomogeneous Poisson point process. In contrary to a homogeneous Poisson process,
an inhomogeneous Poisson process does not have a constant intensity λX(s), but one
that depends on the location. Other properties of the Poisson process are that the
number of bombs in one area A ⊂W is Poisson distributed with the mean ΛX(A)
and the number of bombs in two disjoint areas A ⊂W and B ⊂W are independent
[Illian et al. 2008, p. 118].

Cluster process

It is difficult to distinguish an inhomogeneous Poisson process from a cluster process
[Illian et al. 2008, p. 372]. We can not say with absolute certainty that the point
pattern of exploded bombs is an inhomogenous Poisson process and not a cluster
process. Thus the cluster process has to be mentioned here. Illian et al. [2008] define
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2 Methods for computing high-risk zones

clusters as “groups of points with an inter-point distance that is below the average
distance in the pattern”.
A special cluster process is the Neyman-Scott process, in which the parent points
form a Poisson process. The parent points stand for the cluster centre and are not
part of the actual process which is formed by the daughter points. The daughter
points are scattered around the parent points. The Neyman-Scott process used in
this work has cluster centres that form an inhomogeneous Poisson point process. The
purpose of the Neyman-Scott process here will be explained in detail in Sections 3.2.2
and 3.2.3. For further informations on cluster processes see Illian et al. [2008, Chap.
6.3].

2.3.2 Estimation of the intensity function

The initial step of determining the high-risk zone by the intensity-based method is
to estimate the intensity of exploded bombs λY (s). The estimation is accomplished
by using a nonparametric method that works with a anisotropic Gaussian kernel
KH(·):

λ̂Y (s) = e(s) ·
nY∑
i=1

KH(s− yi). (2.6)

where e(s) is an edge effect bias correction

e(s) =
(∫

W
KH(s− v)dv

)−1
(2.7)

which is needed because there is no information about bombs outside the observation
window W and without it the bias at the margins of W would be negative. H in KH

stands for the covariance matrix of the kernel and is chosen by the cross-validation
technique.

The probability q for a bomb not to explode is assumed to be homogeneous in
the observation window [Mahling et al. 2013] . Therefore it is possible to calculate
the estimator for the intensity of unexploded bombs directly from λ̂Y (s):

λ̂Z(s) = q

1− q · λ̂Y (s) (2.8)

[Mahling et al. 2013]
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2.3 Intensity-based method

2.3.3 Determination of the threshold c

Given the calculated intensity, the boundaries of the high-risk zone are not yet clear.
A critical value c > 0, for which areas with intensity λ̂Z larger than or equal to c
should be searched, is to be set so that the high-risk zone is

Rc = {s ∈W : λ̂Z(s) ≥ c} (2.9)

which means in words that the high-risk zone is all locations s of the observation
window for which the intensity of Z is larger than or equal to c. The difficulty is the
election of c. Goal in the determination of the high-risk zone is that the probability
to have an unexploded bomb outside this zone P{Nz(W \Rc) > 0} should be small.
This failure propability will therefore be set to 0 ≤ α ≤ 1. The number of unexploded
bombs NZ(W ) is unknown and so is the number of unexploded bombs outside the
high-risk zone. Therefore, the failure probability needs to be estimated. What can be
used, is the given probability of non-explosion q, the estimated intensity function
and the assumption that Z is an inhomogeneous Poisson point process, so

NZ(A) ∼ Po{ΛZ(A)} with ΛZ(A) = qΛX(A) = q

1− qΛY (A). (2.10)

The threshold c is the smallest value that applies to

P̂{NZ(W \Rc) > 0} = 1− P̂{NZ(W \Rc) = 0}

= 1− exp{−Λ̂Z(W \Rc)} ·

=1︷ ︸︸ ︷
{Λ̂Z(W \Rc)}0 ·

1
0!

= 1− exp
[
−
{

q

1− q Λ̂Y (W \Rc)
}]

(2.11)

= 1− exp
[
−
{

q

1− q

(∫
(W\Rc)

λ̂Y (y)dy
)}]

!= α

[Mahling et al. 2013] .
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3 Implementation

In the previous chapter the different methods to determine high-risk zones were
explained. This chapter is about the implementation of these methods and some
useful tools for this matter. The implementation is realized in R, which is an open
source statistical software. Since it is open source, everyone can use and write R
packages, which are extensions providing utilities for different statistical techniques
[R Development Core Team 2012].
In course of this work the highriskzone-package is implemented.
This chapter explains the package using the bombs subject to facilitate understanding.
However, the package can be used for various other themes.

3.1 Package dependencies

The highriskzone-package depends on the two packages spatstat [Baddeley and
Turner 2005] and ks [Duong 2012]. The following explanations are just a short
overview on some important utility functions and objects from the packages for the
package highriskzone. For further information see the manuals of the packages
spatstat [Baddeley and Turner 2005] and ks [Duong 2012].

Package spatstat

There exist various packages in R that deal with spatial data. One of them is the
package spatstat. It deals with the analysis of spatial point patterns and supplies
several tools which are highly useful for the implementation of the highriskzone-
package. Next to functions which estimate the density, calculate a distancemap etc.,
important objects for the matters of the highriskzone-package are implemented.
The most important of which are:

ppp To represent two-dimensional point patterns, objects of class ppp were imple-
mented by the authors of spatstat. With the function ppp() the user can
generate such objects. The highriskzone-package needs the data used for
the analysis in this format.
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3 Implementation

owin Every object of class ppp contains an object of class owin, which is the
observation window of the point pattern, i.e. the owin objects store the
coordinates of the border of the observation window. Objects of type owin can
also exist without being part of a ppp-object. For the highriskzone-package
this type of object is needed for two matters. On the one hand for the actual
observation window of the data. On the other hand the zone of high-risk will
be of class owin.

im Another object class is im, which stands for a two-dimensional pixel image.
"A pixel image is essentially a matrix of numerical values associated with a
rectangular grid of points inside a window in the x, y plane" [Baddeley 2010,
Chap. 10, p.63]. A pixel is one unit of the grid.
To create objects of this class, the function im() is provided. For changing the
number of pixels in the x and y direction set spatstat.options(npixel)
[Baddeley and Turner 2005]:

spatstat.options(npixel = c(250, 250))

For details on object-oriented programming in R see Matloff [2011, Chap. 9].

Package ks

The package ks is used for the selection of the smoothing bandwidth while estimating
the intensity function. The function, that conducts the selection is Hscv() [Duong
2012].

3.2 Package highriskzone

The highriskzone-package provides a toolbox dealing with the determination of
high-risk zones. The two main user functions are det_hrz() and eval_method();
the first determines the high-risk zone, the second evaluates the zone and accordingly
evaluates the methods. To do that, data is either simulated or thinned. Several other
functions help dealing with the data, the estimation, the simulation or the evaluation.

3.2.1 Determination of the high-risk zone

The central function of the highriskzone-package is det_hrz, which determines the
high-risk zone using the method the user wants it to. In the R-Code below we see
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3.2 Package highriskzone

the arguments that can be set in this function.

det_hrz(ppdata, type, criterion, cutoff,

distancemap, intens, nxprob, covmatrix)

The arguments have the following meanings:

ppdata Observed spatial point process of class ppp. In the calculation of high-
risk zones for unexploded bombs, this is the data of the point pattern
of exploded bombs.

type Method to use for the determination of the high-risk zone (see Chapter
2). Can be one of "dist" or "intens". "dist" is to be used for the
methods that calculate the high-risk zoneusing the distance to the next
event, i.e. the method of fixed radius and the quantile-based method
and as described below, a method that calculates the radius from a
fixed area. The methods of type = "dist" can be classified together
as distance-based methods. Which one of the three distance-based
methods is being carried out depends on the criterion option (see
below). If type = "intens", the high-risk zone is determined using
the intensity-based method.

criterion Criterion to choose how the high-risk zone should be limited. This
can be one of "area", "direct" or "indirect". For criterion =
"area", the area is fixed, for criterion = "direct" the radius or
the threshold c to cut is fixed and for criterion = "indirect" the
radius or the threshold c are calculated indirectly.
More precisely, let type be "dist", then criterion = "area" means
the high-risk zone shall be of a certain size and the radius of the circles
around the data points is calculated from that. For criterion = "
direct" the method of fixed radius is conducted. For criterion =
"indirect" the determination is done by a fixed quantile.
If type = "intens" and criterion = "area", the area of the high-
risk zone is fixed and the intensity-based method is used. For criterion
= "direct", it means the determination is done using a fixed value

of the threshold c. The indirect way of determining the high-risk zone
by the intensity-based method is to give the failure probability α
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3 Implementation

and calculate the threshold c from that. That is what happens for
criterion = "indirect".

cutoff The cutoff value represents the actual fixed value of limitation, i.e.
the value of the area, the quantile, the failure probability, the radius
or the threshold c, depending on what is set for type and criterion.

distancemap A distance map gives the distance of every pixel to the nearest ob-
servation of the point pattern. It is of class im [Baddeley 2010, p.85,
115]. The distance map is only needed for the quantile-based method.
To put in the distance map is optional for the user. If it is not given,
it will be computed.

intens The user can specify the intensity. This is optional and only needed
for the intensity-based method. The intensity has to be of class im. If
the user does not specify the intensity and type = "intens" it will
be estimated.

nxprob The argument nxprob stands for the probability of having unobserved
events, e.g. the probability for a bomb not to explode.

covmatrix The covariance matrix of the Gaussian kernel is needed for the de-
termination of the smoothing bandwidth, when the high-risk zone
is determined by the intensity-based method (see Section 2.3.2). To
set the argument is optional. If it is needed but not given, it will be
computed within the function.

The return value of det_hrz is an object of class highriskzone which basically
is a list of the type, criterion and cutoff used, the determined high-risk zone (ob-
ject of class owin), the calculated threshold and cutoff value (calccutoff) and
the covariance matrix. The threshold is the threshold c if type = "intens". For
type = "dist", it is the value of the quantile of the next-neighbour distance for
citerion = "indirect" or the radius for criterion = "direct" and "area". The
calculated cutoff calccutoff is NA (not available) if the criterion is anything
else but "area". If criterion = "area", it is the value of the quantile of the next-
neighbour distance if the quantile-based method is used or the failure probability α
if the intensity-based method is chosen. Further details on the return values can be
found in the R Documentation on det_hrz.

The following minimal example shows the determination of a high-risk zone us-
ing the intensity-based method with a fixed threshold c of 0.15, i.e. regions with
estimated intensity higher than 0.15 are in the high-risk zone. The data is read using
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3.2 Package highriskzone

the function read_pppdata, which will be explained further in Section 3.2.3.
As we can see cutoff and threshold are equal which is consistent since we give the
threshold c as cutoff value. Figure 3.1 shows the resulting high-risk zone in green.
plot.highriskzone is a generic plotting function for objects of class highriskzone.
It is also executed if a highriskzone-object is given to the function plot().

#generate example data
ppdat <- read_pppdata(xppp = c(1, 2, 1, 2, 5, 5.8, 8.5, 1:10),

yppp = c(1, 1.5, 1.8, 0.45, 6.5, 7.1, 2.5,

9:6, 4:1, 7.5, 8),

xwin = c(0.5, 12, 10, 13, 0),

ywin = c(-1, 0, 5, 10, 11))

hrz <- det_hrz(ppdat, type = "intens", criterion = "direct",

cutoff = 0.15, nxprob = 0.1)

hrz

## high-risk zone of type intens
## criterion: direct
## cutoff: 0.15

hrz$threshold

## [1] 0.15

class(hrz)

## [1] "highriskzone"

plot(hrz, zonecol = 3, main = "example hrz", box = FALSE,

pattern = ppdat, win = ppdat$window, plotpattern = TRUE,

plotwindow = TRUE)
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3 Implementation

example hrz

Figure 3.1: High-risk zone for example data

3.2.2 Evaluation of the methods

The high-risk zone is the zone that will be searched for unexploded bombs. Thus a
perfect high-risk zone is one which coveres all unexploded bombs and none lie outside
and the area to be searched is preferably small. In reality, it is very sumptuous to
discover the quality of such a zone. The whole property would have to be searched
and the found unexploded bombs inside and outside the high-risk zone would have
to be counted.
A way to work around that procedure is to simulate data. The problem is, that one
has to know exactly what kind of data is needed, e.g. the type of point process and
how high the probability of non-explosion is. But if both type of point process and
probability of non-explosion are known, one can simulate observed and unobserved
events, determine a high-risk zone based on the observed events and and see how
many unobserved events, i.e. unexploded bombs are in- and outside the area to be
searched. Another possibility is to use the real data, split it (randomly) into two
parts and call one the observed and one the unobserved. With that procedure one
does only need the probability of having an unobserved event. The structure will
be thinned and the thinning has to be done using assumptions like the amount of
thinning, i.e. probability of non-explosion, but no distribution assumptions or similar
have to be made for the data structure.

The idea of evaluating the high-risk zone based on a simulation is demonstrated
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3.2 Package highriskzone

by the subsequent example. First an inhomogeneous Poisson process is simulated
and then randomly split into observed and unobserved events whith a probability to
have unobserved events of 0.1. Then the high-risk zone is determined. At last the
function eval_hrz() is executed, in which the zone of high risk, the observed and
the unobserved events have to be set as arguments. It gives back an object of class
hrzeval, which has a list as basic structure. It contains the number of unobserved
events outside the high-risk zone, the number of events in the unobserved point
pattern, the fraction of the first two values, the area of the high-risk zone, the number
of events in the observed point pattern, a subset of the unobserved events which are
outside the high-risk zone and a subset of the unobserved events which are inside
the high-risk zone.

# simulate a Poisson process
set.seed(123)

lambda <- function(x, y) { 50 * exp( 3 * x) }

simdat <- rpoispp(lambda)

# split data in observed and unobserved
ssimdat <- thin(simdat, nxprob = 0.1)

# determine the high-risk zone
hrzsim <- det_hrz(ssimdat$observed, type = "dist",

criterion = "area", cutoff = 0.7,

nxprob = 0.1)

# evaluation of the high-risk zone
eval <- eval_hrz(hrzsim$zone, unobspp = ssimdat$unobserved,

obspp = ssimdat$observed)

eval

## evaluation of a hig-risk zone based on 279 observed events
## number of unobserved events: 31
## number of unobserved events located outside the high-risk zone: 6

class(eval)

## [1] "hrzeval"
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As we can see, the high-risk zone determined here is not satisfying because 6 out of
the 37 unobserved events do not lie in the high-risk zone, which in the real world
would mean that six duds would not be found and stay a hidden danger.

Evaluation gets more solid if more iterations are done, i.e. not only one data set is
simulated and the high-risk zone for that data is determined and evaluated. Besides
that, it is usually requested that the simulated data is similar to existing real data. For
those two tasks the highriskzone-package provides a function. The user can choose
the number of iterations and also the way the simulation is to be done. What the
function does is to simulate data in every iteration and then det_hrz and eval_hrz
are executed on this data.
There are three possible ways of simulating data to evaluate the high-risk zone using
the function eval_method: the first is that we have a data set and split it randomly
with a given probability of having unobserved events into two, as shown above. One
we call the observed and one the unobserved. The splitting is done by drawing from
a binomial distribution with probability of success equal the probability of having
unobserved events. The second kind to simulate data is generating an inhomogeneous
Poisson process based on the intensity of the given data set. The third kind is to
simulate a cluster process (Neyman-Scott process) also based on the intensity of the
given data set and on the maximum radius of a random cluster as well as on the
amount of clustering. This last kind of simulation is used to check what happens if
the underlying process is not an inhomogeneous Poisson process but a cluster process
(see Section 2.3.1).
The possible arguments to set in the function can be seen in the R-Code below:

eval_method(ppdata, type, criterion, cutoff,

numit, nxprob, distancemap,

intens, covmatrix, simulate,

radiusClust, clustering)

As we can see, this function has mainly the same arguments as det_hrz which is
consistent, considering that within the function eval_method the determination of
high-risk zones for the simulated data is executed and the the results are evaluated
for each iteration.

numit The argument numit stands for the number of iterations to be done.

simulate The string given for simulate represents the way the simulation is to
be performed. The option "thinning" stands for the random thinning
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3.2 Package highriskzone

of the given data, "intens" for the simulation of an inhomogeneous
Poisson process via the intensity and thinning afterwards, "clintens"
for the simulation of a cluster process via the intensity and thinning of
that data.

radiusClust This argument is only needed if a cluster process is simulated and
even then it is optional, because it can also be calculated within
eval_method. If set, the numeric value of this argument is used as
radius of the circles around the parent points in which the cluster
points are located.

clustering Has to be a value larger than or equal to 1 which describes the amount
of clustering. The adjusted estimated intensity of the observed pattern
is divided by this value and it is also the parameter of the Poisson
distribution for the number of points per cluster.

The following R code snippet illustrates the use of the function and its arguments.
Ten iterations are done and data is simulated by thinning or rather splitting the
actual data. The “actual” data here is the simulated data set from above. Usually
the number of iterations is higher, but to understand the procedure, it is sufficient.

set.seed(123)

ev <- eval_method(simdat, type = "dist", criterion = "area",

cutoff = 0.7, nxprob = 0.1, numit = 10,

simulate = "thinning", pbar = FALSE)

ev$missingfrac

## [1] 0.10714 0.03125 0.04167 0.00000 0.00000 0.00000 0.03226 0.00000
## [9] 0.00000 0.03226

The example shows that the fraction of the number of unobserved points outside
the high-risk zone and the number of observations in the unobserved point pattern
varies over the iterations. There are five high-risk zones that cover all the unobserved
events. The highest fraction here is 0.10714.

3.2.3 Further functions of the package

There exist several functions in the highriskzone-package that do important work
in addition to the mentioned main functions.
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In the first example, the function read_pppdata() was used reading in the data as
a ppp-object, so it can be used for analysis concerning the high-risk zone topic.
Another important function we have already learned about is eval_hrz(), which
is mainly used inside the function eval_method(). In cases other point patterns
are to be simulated, it is highly useful in direct usage (see Chapter 5). It takes the
determined high-risk zone, the observed and unobserved part of the point pattern
and tells the user how good the zone is.
For splitting point patterns artificially into observed and unobserved events, the
function thin() can be used. This function is also part of eval_method().
A highly useful tool for the intensity-based method in the package is est_intens(),
which estimates the intensity of the given point pattern. It returns a list of the
estimated intensity which is an object of class im and the covariance matrix. This
function is required whenever the intensity-based method is in use.
Last but not least, there is the function sim_nsppp(), which simulates a Neyman-
Scott process using the intensity of the given data (see Section 2.3.1).
The following chapter shows some examples which illustrate the exploit of the
functions.
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4 Application

This chapter illustrates the usage of the highriskzone-package, drawing on two ex-
amples of real data of bomb craters supplied by the Oberfinanzdirektion Niedersachsen.
To keep data privacy, relative coordinates are used in this example.
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(b) Example pattern B

Figure 4.1: Point patterns and observation window of the main examples

The first step of data analysis is always to read in the data. For matters of high-risk
zone determination, an object of class ppp is needed. Often data is supplied as two
data frames: one of the coordinates of the point pattern and one of the coordinates of
the observation window. It is, for instance, the point pattern of example A available
in the data frame called patternA, which stores the x- and y-coordinates of the
443 observations, while the coordinates of the observation window are stored in in
windowA. In the R-Code below we can see how to read in such type of data.

str(patternA)

## 'data.frame': 443 obs. of 2 variables:
## $ x: num 1088 1103 991 976 1000 ...
## $ y: num 2413 2400 2373 2368 2341 ...
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str(windowA)

## 'data.frame': 208 obs. of 2 variables:
## $ x: num 30.94 22.84 15.92 10.22 5.76 ...
## $ y: num 1948 1931 1912 1893 1874 ...

craterA <- read_pppdata(xppp = patternA$x, yppp = patternA$y,

xwin = windowA$x, ywin = windowA$y)

craterA

## planar point pattern: 443 points
## window: polygonal boundary
## enclosing rectangle: [0, 2334.4] x [0, 2456.4] units

To get a better understanding of the intensity based method, the intensity of ex-
ample pattern A is estimated and visualized by a colour image, which maps the
intensity to a colour. Blue stands for a low intensity, while yellow stands for higher
intensity [Baddeley 2010, Chap. 10]. After that, the high-risk zone for this example
is determined via the intensity-based method.

spatstat.options(npixel = 500)

intensity1 <- est_intens(craterA)

plot(intensity1$intensest, main = "")

spatstat.options(npixel = 50)

intensity2 <- est_intens(craterA)

plot(intensity2$intensest, main = "")

As we can see the image of the intensity with 500 pixels is more accurate than the one
with 50 pixels. The obvious advantage of less pixels over more is the time of calculation.

There are various ways of determining the high-risk zone using the intensity-based
method. The user can choose between different criterions, decide wether to use the
already estimated intensity or not and wether to set a covariance matrix or let the
function compute it. Here only one way is shown, but in the R description page of
the function det_hrz() all possibilities can be found. Figure 4.3 shows the resulting
high-risk zone.
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(a) Estimated intensity 500 pixels
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(b) Estimated intensity 50 pixels

Figure 4.2: Colour images of the intensity of example A

hrzAi <- det_hrz(craterA, type = "intens", criterion = "indirect",

cutoff = 0.2, intens = intensity1$intensest, nxprob = 0.1)

plot(hrzAi, win = craterA$window, plotwindow = TRUE, zonecol = 3,

main = "High risk zone", box = FALSE)

For the example B in the following R code snippet, a high-risk zone is determined
for each method: one with fixed radius of 150 meters, one with the 90%-quantile and
one with an α of 0.1. For all three methods the high-risk zone seems to be more
or less similar (see Figure 4.4). The method of fixed radius and the quantile-based
method have results that are more alike than the result of the intensity-based to those,
because they both draw circles aroud the observations. Just that the 90%-quantile is
larger that 150 meters.

data(craterB)

hrzBdd <- det_hrz(craterB, type = "dist", criterion = "direct",

cutoff = 150, nxprob = 0.1)

hrzBdi <- det_hrz(craterB, type = "dist", criterion = "indirect",

cutoff = 0.9, nxprob = 0.1)

hrzBi <- det_hrz(craterB, type = "intens", criterion = "indirect",

cutoff = 0.1, nxprob = 0.1)

op <- par(mfrow = c(1, 3), mar=c(0, 4, 3, 2), oma=c(0.1,1,1,1))
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High risk zone

Figure 4.3: High-risk zone for example A determined via the intensity-based method
using a fixed failure probability of 0.2

plot(hrzBdd, zonecol = 4, main = "hrz by fixed radius\n (r = 150)",

win = craterB$window, plotwindow = TRUE, box = FALSE)

plot(hrzBdi, zonecol = 4, main = "hrz by quantile\n (q_0.9)",

win = craterB$window, plotwindow = TRUE, box = FALSE)

plot(hrzBi, zonecol = 4, main = "hrz by intensity\n (alpha = 0.1)",

win = craterB$window, plotwindow = TRUE, box = FALSE)

par(op)

The next step is to take a closer look at the evaluation prozess. Here we take the data
of example B, split it into what we call observed and unobserved events, meaning
exploded and unexploded bombs, and determine a high-risk zone giving the observed
events. Here determination is conducted using the quantile-based method giving
an area of 1.5 million square metres the high-risk zone should have. Further the
evaluation is performed for the calculated zone. One third of the unobserved objects
lies outside the high-risk zone, which we can also see in Graphic 4.5 produced by
the generic function plot(), which for an object of class hrzeval as input argu-
ment calls the function plot.hrzeval(). The grey zone is the determined high-risk
zone. The blue points resemble the observed events, the magenta ones the unob-
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hrz by fixed radius
 (r = 150)

hrz by quantile
 (q_0.9)

hrz by intensity
 (alpha = 0.1)

Figure 4.4: High-risk zones for example B determined via the three methods

served. The filled magenta points are the unobserved events outside the high-risk zone.

# thin data
set.seed(100)

thdata <- thin(craterB, nxprob=0.1)

# determine hrz for the "observed events"
hrz <- det_hrz(thdata$observed, type = "dist", criterion = "area",

cutoff = 1500000, nxprob = 0.1)

# evaluate the hrz
evaluation <- eval_hrz(hrz = hrz$zone, unobspp = thdata$unobserved,

obspp = thdata$observed)

evaluation$missingfrac

## [1] 0.3333

op <- par(mar=c(1, 4, 1, 6) , xpd=TRUE)

plot(evaluation, hrz = hrz, obspp = thdata$observed, plothrz = TRUE,

plotobs = TRUE, insidecol = "magenta", outsidecol = "magenta",
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Evaluation visualized

observed
unobs inside
unobs outside

Figure 4.5: Visualisation of what happens in the evaluation of the high-risk zone

obscol = "blue", insidepch = 1, outsidepch = 19,

main = "Evaluation visualized", box = FALSE)

legend(2400, 2456.4061,

c("observed", "unobs inside", "unobs outside"),

col = c("blue", "magenta", "magenta"), yjust=1,

pch=c(1, 1, 19), cex=0.8)

par(op)

The next application example is for the function eval_method(). A cluster process
is simulated based on the intensity and the observation window of example B. The
maximum possible radius is 300 metres and the paramter of the Poisson distribution
for the number of points per cluster is 15. Since it is hard to envision what a cluster
process looks like, two example simulated processes are shown first.
For the evaluation, the high-risk zone is determined using on the one hand the
quantile-based method and on the other hand the intensity-based method, each
giving a fixed area equal to the example before. Ten iterations are done, so ten
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sim. cluster process 1 sim. cluster process 2

Figure 4.6: Simulated cluster processes

cluster processes are simulated and 20 high-risk zones evaluated, since two zones are
determined for each process.

set.seed(100)

sim_pp1 <- sim_nsppp(craterB, radius=300, clustering=15,

thinning=0.1)

sim_pp2 <- sim_nsppp(craterB, radius=300, clustering=15,

thinning=0.1)

op <- par(mfrow = c(1, 2))

plot(sim_pp1, main = "sim. cluster process 1")

plot(sim_pp2, main = "sim. cluster process 2")

par(op)

evalm <- eval_method(craterB, type = c("dist", "intens"),

criterion = c("area", "area"), cutoff = c(1500000, 1500000),

nxprob = 0.1, numit = 10, simulate = "clintens",

radiusClust = 300, clustering = 15, pbar = FALSE)

evalm_d <- subset(evalm, evalm$Type == "dist")

evalm_i <- subset(evalm, evalm$Type == "intens")
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data.frame(pmiss_d = mean(evalm_d$missingfrac),

pmiss_i = mean(evalm_i$missingfrac),

pout_d = ( sum(evalm_d$numbermiss > 0) / nrow(evalm_d) ),

pout_i = ( sum(evalm_i$numbermiss > 0) / nrow(evalm_i) ))

## pmiss_d pmiss_i pout_d pout_i
## 1 0.2113 0.2323 0.8 0.9

At an equal area the results of the two methods seems to be quite similar. The mean
fraction of duds outside the high-risk zone (pmiss) is with 0.2113 a little lower for
the quantile-based method than for the intensity based. The fraction of high-risk
zones with at least one unexploded bomb outside the zone (pout) is again lower for
the quantile-based method, which means that for the ten simulated processes, the
quantile-based method performed better on average.
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In the previous chapters different methods of the determination of high-risk zones,
the implementation in the highriskzone-package and the usage the package were
presented.
It is of interest how the methods perform on different point patterns, even ones a
method was not meant for in the first place. In this chapter, we will investigate
performance of the intensity-based method versus a distance-based method when
they are applied to a homogeneous Poisson process or to a process that has the
form of a normal mixture distribution. Larger high-risk zones lead in trend to better
results in terms of covering unexploded bombs. Therefore it is reasonable to give
a fixed area when comparing the methods. Thus, the intensity-based method is
used here giving a fixed area (type = "intens", criterion = "area") and so is
the distance-based method (type = "dist", criterion = "area") in which the
required radius is calculated from the given area (see Section 3.2.1).
The study will be performed by simulating data, splitting it into an “observed” and
an “unobserved” process, determining a high-risk zone for the observed part and
evaluating the high-risk zone by investigating how many unobserved events lie outside
and inside the high-risk zone. The procedure will be conducted 1000 times in each
case.

5.1 Homogeneous Poisson process

In Section 2.3.1 we have learned that the difference between a homogeneous and a
inhomogeneous Poisson process is the intensity λ. For the inhomogeneous process it
depends on the location, whereas it is constant for the homogeneous process.
Figure 5.1 shows a point pattern generated by a homogeneous Poisson process on the
unit square with λ = 50 on the left side and the estimated intensity (by est_intens)
on the right side. It displays clearly that the estimated intensity does not equal
the theoretical intensity 50 on all locations. If the estimated intensity actually was
constant on all locations, this would mean for the intensity-based method that either
the high-risk zone would equal the observation window or the area of the high-risk
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Table 5.1: Mean fraction of unobserved events outside the high-risk zone pmiss

and fraction of high-risk zones that leave at least one unobserved event
uncovered pout for homogeneous Poisson processes; calculation only with
data sets that contain unobserved events in brackets; method intens stands
for intensity based method, dist for distance-based method

λ = 50 λ = 500
method intens dist intens dist
pmiss 0.24059 0.2422 0.2503 0.2489
pout 0.7160 0.7100 1 1

(0.7157) (0.7097)

zone would be zero, depending on the value of the threshold c. That is why the
homogeneous Poisson process is interesting for this investigation.

Poisson process estimated intensity
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Figure 5.1: Simulated Poisson process with intensity 50 and corresponding estimated
intensity

In this section two different types of homogeneous Poisson processes are simulated.
One with λ = 50 and one with λ = 500, each with the unit square as observation
window. The simulated data is randomly split into unobserved and observed events,
with a probability to have unobserved events of 10 percent. The procedure described
at the beginning of the chapter is iterated 1000 times. To determine the high-risk
zones, a fixed area of 0.75 is given.

A summary of the results is shown in Table 5.1. It depicts the mean fraction of
unobserved events, i.e. unexploded bombs, outside the high-risk zone in 1000 iterations
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which is enlabeled with pmiss and the fraction of high-risk zones that leave at least
one unobserved event uncovered (pout). Both values are rounded to four decimal
places.
For the Poisson processes with intensity 50, the mean fraction of unobserved events
outside the high-risk zone is slightly lower, i.e. the high-risk zones are better in
average for the intensity-based method. However, there are more high-risk zones that
cover all bombs for the distance-based method. 9 out of the 1000 data sets simulated
had no unobserved events. These data frames could not be included in the calculation
of pmiss for dividing by zero is not possible. pout was calculated both for all cases
and only for cases with at least one unobserved event. The latter aspect is shown in
brackets.
Figure 5.2 shows the empirical cumulative distribution functions of the fraction of
unobserved events outside the high-risk zone which will be denominated as missing
fraction. Generally, it can be said that the better the method, the larger the area
under the curve, hence the curve being left or above the other curve is the one of the
method with better outcome.
The first plot shows the results for the Poisson process with intensity 50. The jump
in zero shows that there is more than a quarter of high-risk zones covering all
unobserved events, which is just the same as 1− pout. The green line standing for
the intensity-based method and the red line standing for the distance-based method
are very similar. None of the methods can visually be rated as the favourable here
since no curve is constantly above the other.
The same shows us the boxplot of the differences

mintens,j −mdist,j ∀j = {1, 2, ..., 1000} (5.1)

with mintens,j missing fraction of the intensity-based method and mdist,j missing
fraction of the distance-based method in iteration j which is shown in Figure 5.3. It
is highly symmetric which means there is no tendency to which method is better.

For the processes with an intensity of 500 the distance-based method in average
performs very little better than the intensity-based method. While for both methods
no high-risk zone covers all unexploded bombs, the mean fraction of duds outside
the high-risk zones takes a value of 25.03 percent for the intensity based method and
24.89 percent for the distance-based method. The curves of the empirical distribution
functions are very close. From the plot one can not make out which method is the
better one. The corresponding boxplot (Figure 5.3 left box) tells us the same.
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Altogether, both methods show similar performances for the homogeneous Pois-
son processes.
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Figure 5.2: Empirical distribution functions of the missing fraction for the Poisson
processes with intensity 50 and 500

5.2 Normal mixture distribution

A mixture distribution is a mixture of two or more distributions. Let X be a random
variable with

X ∼ η1 ·N2(µ1,Σ1) + η2 ·N2(µ2,Σ2) (5.2)

then X originates from a mixture distribution of two two-dimensional multivariate
normal distributions with weights η1, η2. Then the mixture density is

fx = η1 · f2(y;µ1,Σ1) + η2 · f2(y;µ2,Σ2). (5.3)

The weights are values between 0 and 1 and sum to 1, so the integral of the den-
sity equals 1. In random number generation the weight ηi stands for the mixing
proportions, e.g. here η1 is the probability that the sample variable is part of the
distribution N2(µ1,Σ1) [Frühwirth-Schnatter 2006, Chap. 1.2].
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Figure 5.3: Boxplot of the differences mintens,j −mdist,j for the Poisson processes
with intensity 50 and 500

Two-dimensional normal mixture distributions with circular shape

In the following, point patterns are simulated from a two-dimensional normal mixture
distribution with proportions 0.75 and 0.25. Thus, an average of three quarters of the
250 points to be simulated are expected to be part of the first set of two-dimensional
normal distributions and one quarter of the other. Since the number of points in
total is fixed to 250, the simulated point patterns are no inhomogeneous Poisson
processes [Illian et al. 2008, p. 118].
First, four different types of normal mixture distributions are simulated. Later on
two other types will be introduced. All four of the primary versions have the same
variances and covariances equal zero for one set of multivariate normal distribution.
In all cases, the mean of the first set is the two dimensional null vector and the
covariance matrix has 1 on the diagonal and 0 else. Means and covariance matrices
of the second sets vary, yet the variances are always larger than in the first set.
The window stays the same for all versions: a rectangle with a range of -5 to 30
in x-direction and -10 to 10 in y-direction. It is possible that generated points lie
outside this window which does not matter since in the real world sometimes events
also lie outside the observed field and are not considered in the analysis.
To be able to compare the results, the high-risk zone is determined fixing the area
again. Here the fixed area is 100.
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Table 5.2: Overview on mixture distributions used for the simulation

Version 1 µ1 =
(

0
0

)
; Σ1 =

(
1 0
0 1

)
µ2 =

(
20
0

)
; Σ2 = 10 · Σ1

Version 2 µ1 =
(

0
0

)
; Σ1 =

(
1 0
0 1

)
µ2 =

(
20
0

)
; Σ2 = 1.5 · Σ1

Version 3 µ1 =
(

0
0

)
; Σ1 =

(
1 0
0 1

)
µ2 =

(
5
0

)
; Σ2 = 10 · Σ1

Version 4 µ1 =
(

0
0

)
; Σ1 =

(
1 0
0 1

)
µ2 =

(
5
0

)
; Σ2 = 1.5 · Σ1

Table 5.2 shows the kinds of normal mixture distributions which will be used. A
visual display of the densities of the four variations can be seen in Figure 5.4. The
plots display clearly that the first two versions do not cross even at very low level
(0.002), but in the other two the densities mix.

For random numbers generated for the mentioned normal mixture distributions, the
estimated density or intensity is usually not equal but similar to the shown theoretical
densities in Figure 5.4. An example that shows this is Figure 5.5.

Table 5.3: Mean fraction of unobserved events outside the high-risk zone pmiss

and fraction of high-risk zones that leave at least one unobserved event
uncovered pout for normal mixture distributions versions 1 to 4; method
intens stands for intensity based method, dist for distance-based method

version 1 version 2 version 3 version 4
method intens dist intens dist intens dist intens dist

pmiss 0.1234 0.1399 0.0073 0.0038 0.0839 0.0989 0.0011 0.0011
pout 0.9470 0.9680 0.1670 0.0920 0.8740 0.9160 0.0280 0.0270

Table 5.3 shows a summary of the results of the simulation study for the four versions
of normal mixture distributions with circular shape. The intensity-based method
performs better on average of the 1000 iterations for the first and third version. Both
the mean fraction of unobserved events outside the high-risk zone and the fraction
of high-risk zones that leave at least one unobserved event uncovered is higher for
the distance-based method. For version 2, however, the tendency is contrary and for
version 4 pmiss is the same for both methods while for the intensity-based method
slightly more high-risk zones do not cover all unobserved events.
The empirical distribution function curve of the intensity-based method in version 1
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Figure 5.4: Overview on theoretical densities of mixture distributions used for the
simulation. The grey line is always on 0.002, the black contour lines are
in equal distances.
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Point Pattern Estimated Intensity
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Figure 5.5: Example of randomly generated numbers from the normal mixture distri-
bution version 2
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Figure 5.6: Empirical distribution functions of the missing fraction for the normal
mixture distributions version 1-4
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Figure 5.7: Boxplot of the differences mintens,j − mdist,j for the normal mixture
distributions version 1-4

and 3 (Figure 5.6) is a little above the curve of the distance-based method which tells
us that the intensity-based method operates better on such type of point pattern. The
area under the curve for version 2 and 4 is large for both methods which sticks to the
small values of pout. Due to the fact that for the distance-based method even more
high-risk zones cover all unexploded bombs, the area is even a little smaller than for
the intensity-based method. For version 4 the difference can hardly be perceived.
The distribution of the differences mintens,j −mdist,j has a negative skew for methods
1 and 3 which is shown in Figure 5.7. This again delivers that the intensity-based
method performes better here. The boxes of version 2 and 4 are reduced to the
median line which is clear since for both methods most missing fractions are zero.
In conclusion for the versions with the bigger difference (Σ2 = 10 · Σ1) between the
variances of the sets, the intensity-based method delivers a better performance; for
Σ2 = 1.5 · Σ1, the distance-based method performs slightly better.
Furthermore both methods achieve better results for the smaller difference of the
variances. With the smaller distances of the means which we have for version 3 and
4 the high-risk zones of both methods cover the unobserved events better than with
the distances of means in version 1 and 2.
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5 Simulation study

Table 5.4: Overview on mixture distributions used for the simulation

Version 5 µ1 =
(

5
0

)
; Σ1 =

(
3 0
0 1

)
µ2 =

(
17.5

0

)
; Σ2 = 1.5 · Σ1

Version 6 µ1 =
(

5
0

)
; Σ1 =

(
1 0
0 1

)
µ2 =

(
17.5

0

)
; Σ2 =

(
1.5 · 1 0

0 1.5 · 3

)

Two-dimensional normal mixture distributions with elliptic shape

As supplement to the normal mixture distributions with equal variances in one set,
we now consider elliptical sets. The two cases are explained in Table 5.4 and the
theoretical densities are shown in Figure 5.8. Observation windows and weights η1, η2

are the same as for the normal mixture distributions above. The distance of the
means is the average distance of the means for the earlier simulations, 12.5. For the
first version with elliptic sets – version 5 – the variance in x-direction of Σ1 is three
times the variance in y-direction and the covariance matrix Σ2 is 1.5 times Σ1. In
version 6 the variances of x- and y-direction of Σ2 are swapped in reference to version
5.
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Figure 5.8: Overview on theoretical densities of mixture distributions used for the
simulation. The grey line is always on 0.002, the black contour lines are
in equal distances.

Both versions show highly similar results. Values pmiss, pout as well as the Visualiza-
tions 5.9 and 5.10 demonstrate that for version 5 and 6 the intensity-based method
delivers better results than the distance-based. Using the intensity-based method,
about half of the high-risk zones cover all unobserved events in both version 5 and 6.
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5.2 Normal mixture distribution

Table 5.5: Mean fraction of unobserved events outside the high-risk zone pmiss

and fraction of high-risk zones that leave at least one unobserved event
uncovered pout for normal mixture distributions versions 5 and 6; method
intens stands for intensity based method, dist for distance-based method

version 5 version 6
method intens dist intens dist

pmiss 0.0268 0.0384 0.0301 0.0387
pout 0.4870 0.6160 0.5290 0.6200
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Figure 5.9: Empirical distribution functions of the missing fraction for the normal
mixture distributions version 5 and 6
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5 Simulation study
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Figure 5.10: Boxplot of the differences mintens,j − mdist,j for the normal mixture
distributions version 5 and 6

For the distance-based method, it only is about 40 percent. The curve of the empirical
distribution function of the intensity-based method is always left or equal the curve
of the distance-based method. The boxplots of the differences mintens,j −mdist,j show
similar results as for versions 1 and 3.

One can hardly say that one method performed better in the simulation study than
the other. All point patterns simulated were no inhomogeneous Poisson processes,
so one would expect the intensity-based method, which bases on the assumption
that the underlying process is an inhomogeneous Poisson process, to not perform as
decently as it did. Apparently the intensity-based method is quite robust. At least for
the point patterns shown here. Still the performance of the distance-based method
was not much worse. For version 2 and 4 of the normal mixture distributions it even
did slightly better.
There are uncountable further possibilities of point patterns that could be simulated.
One idea is to simulate an inhomogeneous Poisson process using the intensity of the
normal mixture distributions version 1 to 6 and see if this leads to an improvement
towards the normal mixture distributions simulated in this thesis [Baddeley 2010,
Chap. 15.1].
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6 Conclusion

In this thesis different methods to determine high-risk zones were presented: The
distance-based methods and the intensity-based method. These methods and various
tools regarding the high-risk zone topic were implemented in an R package called
highriskzone. Among the tools were a function for data preparation, one for simu-
lating cluster processes, functions to evaluate high-risk zones and generic functions
for visualization. The package depends on two other R packages: ks [Duong 2012]
and the highly useful package spatstat [Baddeley and Turner 2005], which deals
with the analysis of spatial point patterns.
In Chapter 4 some possible ways of using the highriskzone-package are shown for
real point patterns of exploded bombs from German properties. Data was provided
by the Oberfinanzdirektion Niedersachsen.

A simulation study where homogeneous Poisson processes and two-dimensional
normal mixture distributions were generated, showed that it is not clear which of
the intensity-based and the distance-based method is the one with overall better
performance for the chosen types of point patterns. Though, the intensity-based
method did slightly better on some process types. The intensity-based method also
seems to be quite robust for point patterns which are no inhomogeneous Poisson
processes.
To get deeper knowledge about when which method delivers better results, there
have to be more simulations with more different types of point patterns and different
fixed areas.
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